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Motivation & Outline

•  Core Ion thermal transport suppression
   demonstrated on many machines with reversed or 
   weak magnetic shear   (Internal Transport Barriers)
   – in some cases particle transport also suppressed
   – likely due to ExB flow-shear suppression of 
      long-wavelength turbulence

→ basis for Advanced Tokamak and 
    Compact Stellarator Configurations

•  Electron thermal transport is sometimes reduced, 
sometimes ~unchanged; always anomalous.

 – need to develop predictive understanding
 – need to understand to try to suppress

• Brief review of Enhanced Reversed Shear (ERS) 
 transport and profiles 

•  Detailed structure of Te profile, transport

•  Comparisons with theoretical predictions

TFTR
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•   Plasmas with reversed or weak magnetic shear can show a sudden 
    transition to reduced core transport of particles and energy
    (ERS mode  –  Enhanced Reversed Shear)

•  ERS plasmas develop extremely peaked profiles
   – ne(0) / <ne> ~ 5,    p(0) / <p> ~ 8
      p(0) up to ~6 atmospheres

•  ERS plasmas show extreme hysteresis
   High central density can be maintained with ~5 MW of NBI

ERS

Reversed Shear

Two Confinement Regimes Observed
with Reversed Core Magnetic Shear

ne(0)
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χe is Not Reduced after Transition
TFTR
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•  Is χe larger in ERS?  
   or ~ equal within the uncertainties
   –  uncertainties due to large time derivatives
       and profile measurements of ∇ T

•  Why?
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ERS  Te  Profiles Are Broader, Squarer than RS

•  Te measured by ECE grating polychromator,
    each channel cross calibrated to Michelson interferometer

•  Adjacent identical shots, except one transitions to ERS

•  ERS Te profile shape develops ~ 0.1 sec after transition

•  Observed on all ERS,  Type I transitions
    Not observed on Type II transitions

•  Gradient in reversed shear region is within systematic 
    uncertainty of diagnostic calibration
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Similar flattening is Observed on JT-60U & AUG

•  see H. Shirai et al, Phys. Plasmas 5, 1712 (1998)
         and 1998 IAEA, Yokahama, Japan.

•  also observed on Te only in Asdex-Upgrade,
   see paper by R. Wolf et al, 1998 IAEA, Yokahama, Japan.
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Plasma 'Jog' Used to Improve Radial Resolution

•  Sweep plasma past fixed detectors to improve radial resolution
   both inward and outward motions used

•  Maximum velocity ~ 3 m/sec;  
   sample rate up to 500 kHz

•  Jog during reduced power 'postlude'
   plasma near steady state

•  Gives single detector measurement of gradients
   ⇒  reduced systematic uncertainty

• • • • • •
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Jog'd  ECE  Shows Core Te is Flat in  ERS !
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•  Each colored segment shows the trajectory of a single
   detector during the plasma motion, mapped to the 
   pre-motion position

•  Similar profiles obtained at low and high B  ERS 
   shots

•  Note corner in Te profile near shear-reversal point
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Jog'd  ECE  Shows Core Te is Flat in  ERS !

ERS

• Detector calibrations corrected  
   correction factors averaged over 4 shots
   in core-region < 4 % corrections,  typ.  ~ 2%

•  ERS Not profile consistent !!

•  Most of the ERS core ∇ Te in the standard analysis is     
   from systematic errors in detector calibration

•  RS profile similar to jog-measured Te profile for supershots
   profile shape ~ similar to other regimes 
                         L-mode, supershot, ohmic,...
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Forward/Back Jog Shows Plasma is not Damaged

ERS

•  Shows full jog, moving out and then back to original position
    elapsed time:  70 msec

•  Individual detectors trace loops, height ~50 eV in core

•  Loops close  
   ⇒  likely residual problems with plasma position measurement
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Jog'd  Interferometetry:  Core ne is Peaked

ERS

•  Combination of two identical shots, one jog'd inward,     
    one jog'd outwards

•  Also:  jog'd core Visible Bremstrahlung emission ∝  ne
2 Te

1/2 Zeff 
   very peaked, consistent with peaked ne
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Jog'd  Interferometetry:  Core ne is Peaked

ERS

•  From Abel Inversion of jog'd  nel  profile

•  Peak ne is ~10% lower than non-jog standard analysis

•  Outer edge of steep gradient is at same location as for Te

•  Ti and vϕ measurment averaging time too long for jog-technique

   –  however, those profiles are peaked outside the error bars
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Core ∇ Te is Extremely Low in ERS

•  ∇ Te measuremented by a single detector in each spatial 
   region, from change in Te during plasma motion 
   – minimize systematic uncertainty

•  ∇ Te  ~  15 eV/cm in core, averaged over one cm.

•  Very high ∇ Te near shear-reversal surface

•  transition from  ~ 60 eV/cm to  > 300 eV/cm 
    with  <2 cm separation !    
   At the limit of instrumental spatial (frequency) resolution

ERS
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ERS χe is Increased in Core, Reduced in Barrier 

•  Power balance analysis of jog'd profiles for Te and ne

•  Analysis during near-steady-state 'postlude'
   Reduced uncertainties relative to earlier analysis with large time-
   derivatives.  Largest uncertainty now, for thermal transport, is due 
   to Ti and the ripple modeling.

•  χe / De ~ 50 in the core !!

               ~ 4 in the barrier 

   χe / χi   ~ 100 in the core

χe
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Most Plausible Explanation: 
Stochastic B !

      In core:  χe / De ~ 50,   χe / χi > 100

•  Difficult to understand how electrostatic modes 
   could give such large  χe / De

 – Rechester-Rosenbluth:  χe / De ~ m1/2 = 67

    would require Br/B ~ 3 x 10-4

•  Must be high k⊥ ρi turbulence to avoid ion 
    transport via ion orbit averaging.
 –  ρi = 0.3 - 0.5 cm

What Instability?
   Fundamental problem:  What gradient provides drive?  
   Te is being transported, but ∇ Te ~ 0.  
   Substantial ∇ Ti and ∇ ne, but they are not being  
   dissipated.

•  ηe or Electron Temperature Gradient-Mode (ETG)
   has no drive
 LTe ~ 3.5 m   > R=2.6 m
 ηe < 0.1

TFTR
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No Apparent Core Te Fluctuations

•   RMS Te fluctuation in 1ms intervals, 
    mapped to pre-motion position

•  Amplifier noise subtracted.  Channel at R ~ 2.87m very noisy

•  In core, measured Te fluctuations consistent with expected 

   ECE blackbody noise.  
   – As expected for convective modes with ∇ Te ~ 0.

•  Very small 60 +/- 10 kHz fluctuations near shear reversal
    also observed on reflectometer, Mirnov array
    n = –3, m = 5 – 7 from Mirnov
    displacement  ≤ 1 mm

ERS
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No Strong High-kθ Density Fluctuations

•  Integrating shifted scattered spectrum, ignoring unshifted line center

•  Core Te flattening observed in ERS case from  ~2.85 s thru  ~3.37 s

•  Scattered signal is proportional to density ⇒  fluctuations similar in 
    postlude phase for ERS and RS 

•  For kθ ~ 2 cm-1, RS fluctuation level higher than in ERS, similar to     
    reflectometer measurements
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Core  χe:  Possible Models

•  No unstable ideal MHD modes found    ( J. Manickam)

•  Electromagnetic skin-depth
 c2     vTe      ~  1 m2/s   <<  χe

      ωpe
2
  R q

•  Resistive Interchange:   DR ~ 1  both ERS and RS    (M. Hughes)
    –  mode is barely unstable,  easily stabilized kinetically
    –  at higher β values,  DR ~ 70 has been calculated
        appears to be uncorrelated with transport

•  Resistive pressure gradient turbulence
   [ e.g. Carreras-Diamond, Phys. Fluids B1, 1017 (1989) ]
   –  predicts large enough transport, 
   –  Gives same level for ERS and RS: no discrimination.
   –  Should be re-examined, including flow shear
    
•  GS code by M. Kotschenreuther  [ CPC 88, 128 (1995) ]
   –  Comprehensive linear stability analysis of full gyrokinetic 
       equations (Antonsen and Lane) in ballooning representation.  
   –  Should address all short wavelength electrostatic and 
       electromagnetic modes, including resistive interchange, 
       resistive ballooning, micro-tearing, ETG, ...

   –  finds no linearly-unstable modes !!

Need to look at non-linear instabilities
and (possibly)  tearing modes  (below neoclassical stabilization)

TFTR



Transport in the Barrier: ETG?

The GS code has also analyzed the microstability of the 
electron transport barrier region, where χe is suppressed 
in ERS. 

Preliminary results:
(some cross checking in progress)

•  unstable mode with  k⊥ ρi ~ 100,   k⊥ ρe ~ 1
•  ∇ Te is ~30% higher than the critical gradient for ETG

ETG is analogous to ITG (with i ↔ e), but with strictly 
adiabatic ions due to the very high k⊥ ρi 
⇒   strong gyro-averaging.

From the analogous ITG calculation, can estimate
•    χe(ETG)  >  30 Dmix  ~  3 χe(Exp)  ~  100 χi (ETG)

where Dmix is the Kadomtsev mixing length estimate
     Dmix  ~  γ / k⊥

2

⇒   ETG may be strong enough to enforce marginality
      uncertainties need to be investigated

TFTR



Summary

•  Te is very flat in the core of ERS plasmas
    (inside the shear reversal surface)

•  χe in the ERS core is much larger than in RS 
  –  in contrast to De, χi, χϕ

•  χe ~ 50 De,  ~ 100 χi in core!
  –  may imply that the core magnetic field is 
      stochastic, on a very fine scale
  –  dissipating ∇ Te but no ∇ Te drive! 
      what is driving the turbulence?
  –  no instabilities found by comprehensive code

•  ∇ Te is locally very large (~ 680 eV/cm) in
    ~5 cm layer near reversal surface

•  χe is 4 times lower in ERS than RS 
   in layer near reversal surface
   –  clear electron thermal transport
   –  may be limited by ETG 
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